If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-25x^2+13=0
a = -25; b = 0; c = +13;
Δ = b2-4ac
Δ = 02-4·(-25)·13
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{13}}{2*-25}=\frac{0-10\sqrt{13}}{-50} =-\frac{10\sqrt{13}}{-50} =-\frac{\sqrt{13}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{13}}{2*-25}=\frac{0+10\sqrt{13}}{-50} =\frac{10\sqrt{13}}{-50} =\frac{\sqrt{13}}{-5} $
| 9^x-1-2.3x-27=0 | | 11x-11=154 | | 5h(-3+-8)=10 | | -16x+70x+10=0 | | 11/10-7/10=c | | -3(2x+7)=18 | | 3x-10-2x+15=180 | | -8r+18=-174 | | 3x-8/2=7 | | 7.65=2.25+0.20(m-1 | | 4(w-1)-1=2(2w-3 | | (3x-10)-(2x+15)=180 | | 25^x-4=(1/5)^2x | | 2/5x+10=25 | | 3(4g-5)+2=83 | | 8/5=100/x | | 10(x+11)=200 | | (1/5)^x-3=125 | | 5–9x=5–4x–5x | | 7/10-c=2/5 | | 3(4g-5)2=83 | | 5x-14=8x-7 | | -18-11p=-205 | | -6/5p+4=-20 | | 6^-x+6^1-x+6^3-×=259 | | $6.05=$2.25+$0.20(m-1) | | H/5=5.1h= | | 3(x*2)=144/3 | | –9x=5–4x–5x | | 16n-14=-334 | | -2(x-13)=-2 | | n/22-1=0 |